Applied Research and Education – A New Model

Randy Taylor
Extension Engineer, Machinery Systems

Stillwater Research Station - 1937
- Lysimeter – Determine efficiency of rainfall in crop production
- Weather Station
- Winter wheat varieties
- Crop rotation and fertility

Stillwater Research Station - 1976
- Plant population, row spacing and fertilizer response of grain sorghum
- Lime sources and rate on various crops
- Weed control/herbicide studies
- Small grains performance nurseries

What About Today?
- In some ways we haven’t changed much
- In other ways we have changed a lot
- Who’s making the coarse and fine adjustments?
- Where are the resources going?
- How does this affect you?

Where Does Ag Technology Fit?
- Data logging devices
- Rate controllers
- Guidance systems
- Yield monitors

No-Till Adoption
I think that ag technology adoption is following a similar trend.
Data Logging
- A data logger coupled with a GPS receiver lets us create application maps.
- Allows us to record (automatically) what we are doing in the field.
- Now we know where the proverbial check strip is located.

Rate Controllers
- Rate controllers allow us to easily change rates without leaving the cab.
 - No sprockets and chains
- We can even make application maps have automate the process.

Guidance Systems
- Guidance systems can help us lay out replicated, randomized plots.
- We do not need to drive paths in a sequential order.
- This is really handy if you don’t have a means to adjust rates from the cab.

Ag Machinery Research
- Small plot field research works with some machinery
- The trend has been to larger farm machinery
- Some is not available in sizes conducive to small plots
- How do we conduct valid research with current ag equipment?

Applied Research Model
- University
 - Analytical and research skills
 - Cooperative relationships where everyone has a stake.
- Industry
 - Products to test and sell in a competitive market
- Producers
 - Desire to improve efficiency by reducing production cost.

Example - 2003 Drill Study
- Soybeans were drilled into corn and milo stubble at 5 fields in NE Kansas
- Planted on May 14, 15, 22, and 28
- We used 3 drills (Deere 1590, GP 1510P, Sunflower 9412) on 7.5” spacing, the farmer’s planter (30”), and GP twin row
- Four replications at each field
Project Responsibilities

- University: experimental design, calibrating seeders, collecting and analyzing data, and overall study coordination.
- Growers: selecting varieties, seeding rates, adjusting and operating their planters, and collecting yield monitor data during harvest.
- Industry: transporting their seeder to fields and adjusting and operating their seeder to the desired conditions.

Field Layout

Five treatments, replicated four times on each field. Plots were 60 feet wide on the smaller fields and 120 feet wide on the two larger fields.

Application and Harvest

-Nitrogen was applied in 60 feet wide parallel swaths with OSU’s Cherokee sprayer in mid March.
-Plots were harvested with the cooperator’s John Deere combine equipped with a 30 foot grain platform and Greenstar yield mapping system.

Example Project in Corn

Wheat Transect

![Wheat Transect Graph]

Integrating Map and Sensor Data

- We know that the response to N varies spatially across the field.
- We also know that response to N varies each year.
- Can we incorporate other information (yield monitor data) that we have to aid nitrogen decisions?
- Use yield monitor data to determine yield potential zones and crop sensors to determine seasonal N needs.
Low yielding area where NDVI between the N-Rich strip and farmer practice are similar. No extra nitrogen was recommended.

High yielding zone where the NDVI is greater in the N-Rich strip and nitrogen was recommended.

On-Farm Research
- Has the potential to expand knowledge about individual farms
- Comparison of varieties, tillage practices, fertility rates, etc.
- Not as easy as it may seem, but not as hard as some make it
 - What do you want to know?
 - Why do you want to know it?

Complications for On-Farm Trials
- Grain flow in the combine
- Data validation
- Field variation
- Plot size and layout

Limitations of Yield Monitors
- Yield maps approximate crop yield at a point
- The flow of grain in the combine does not start and stop abruptly
- Crop cut at the edges of the header takes longer to reach the sensor than crop cut at the center of the header.
- Yield monitors overestimate low yielding areas and underestimate high yielding areas

Yield Monitor Errors
- Operator Induced
 - Sudden changes in speed
- Calibration Errors
- Remember, the yield monitor measures mass flow (not yield).

What Causes Error?
- \(R^2 = 0.76 \)
- \(R^2 = 0.63 \)
- \(R^2 = 0.53 \)
Ranking Plots/Treatments

Using YM for OFR
- 50% of the error between weigh wagon and yield monitor weights was due to mass flow
- Correlation between yield monitor and weigh wagon weights was 0.97
- Regression results lead to the same conclusions regarding the treatments
- Challenging to rank treatments with YM data

Plot Size
- Takes 10-15 seconds for a combine to reach full capacity
- A combine travels about 1.5 feet every second for each mph of ground speed
- at 5 mph it travels 7.33 ft/sec (100 ft in 15 s)
- Given the understanding of combine dynamics (i.e. the limitations of your scale) plots should be sized accordingly
- Also field variation can influence yield results
- Adding these means big plots

The Future of Research & Extension
For the times they are a-changin’ -- Bob Dylan, 1963
I’ve seen a lot of change in my life and I fought most of it every step of the way.

Local Research Groups
- Find a topic of local importance
- Each producer is a replication
- Share the data for analysis
- Be the facilitator of data collection and analysis

Applied Research Model
University

Analytical and research skills

Cooperative relationships where everyone has a stake.

Industry

Products to test and sell in a competitive market

Producers

Desire to improve efficiency by reducing production cost.