The McCurtain County Cattleman’s Association will meet Thursday, October 8th, at the Kiamichi Technology Center north of Idabel. The meeting will begin at 6:00 p.m. with a brisket dinner followed by business and education part of the program.

County Agriculture Educator Brad Bain will be presenting an introduction to the OSU Master Cattleman’s program which will kick off later this fall.

All area cattleman and other interested individuals are invited to attend. The MCCA will be providing the brisket and drinks. Member families are asked to bring either their favorite vegetable or desert. Contact the Extension Office at 286-7558 for more information.

McCurtain County Poultry Producers and Litter Applicators have three chances over the next few weeks to complete their 3 hours of continuing education for the 2009 year.

The first training session will be offered twice on September 30th and is sponsored by Tyson Foods. The first session will be held at the Tyson Complex Office at Grannis Arkansas from 1:00 p.m.—4:00 p.m. Topics will include Benefits of Windroweing by Dr. Bud Malone from the University of Delaware, Darkling Beetle Control with Rick Hack from Elanco Company, and Poultry Litter Treatments with Blake Gibson. These speakers will also present their programs at Idabel at the Kiamichi Technology Center from 6:00 p.m.—9:00 p.m. Special thanks to Chuck Bell and Tyson Foods for assisting us in getting these speakers to the area to deliver these presentations.

Poultry Waste Management Trainings Scheduled

The Oklahoma Cooperative Extension Service will also offer a training at the Idabel Technology Center on Thursday, October 22nd. Topics for this meeting include an update on the Arkansas—Oklahoma Nutrient Lawsuit, Managing Wintertime Ventilation, and as well as other topics to be announced.

Which ever training you choose to attend, be sure that you sign the OSU Extension Service Sign In Sheet. I will be at all three meetings including the Grannis session. If your name is not printed on the sign in sheet, we will be unable to give you credit for your attendance.

More information on the poultry waste management training program is available at: poultrywaste.okstate.edu.
Fenceline Low Stress Weaning

By Dr. Glenn Selk, OSU Extension Cattle Reproduction Specialist

Spring calving herds across the Midwest and South-west will soon be planning to wean the calves. Some producers may wean the calves from young or thin cows during September in order to regain some body condition before winter adds to the nutrient requirements. However, many herds will wean at the more traditional times of late October to early November.

Methods to reduce stress on the calves have become of great interest to producers. Therefore, weaning strategies have been studied in recent years. California researchers weaned calves with only a fence (Fenceline) separating them from their dams. These were compared to calves weaned totally separate (Separate) from dams. The Separate Calves could not see or hear their dams. Calf behaviors were monitored for five days following weaning. Fenceline calves and cows spent approximately 60% and 40% of their time, respectively within 10 feet of the fence during the first two days. During the first three days, Fenceline calves bawled and walked less, and ate and rested more, but these differences disappeared by the fourth day. All calves were managed together starting 7 days after weaning. After two weeks, Fenceline calves had gained 23 pounds more than Separate calves. This difference persisted since, after 10 weeks, Fenceline calves had gained 110 pounds (1.57 lb/day), compared to 84 pounds (1.20 lb/day) for Separate calves. There was no report of any differences in sickness, but calves that eat more during the first days after weaning should stay healthier. An Ohio State University study indicated that Fenceline calves had a lower incidence of respiratory diseases.

Producers that have tried Fenceline weaning will remind us that it takes good, well maintained fences and adequate water supplies for both sides of the fence. Remember, a large number of cattle are going to be congregated in a small area for several days. Therefore water availability for both cows and calves is critical. To wean and background, even for short periods, fenceline weaning should be considered. Source: Price, et al. 2003. Fenceline contact of beef calves with their dams at weaning reduced the negative effects of separation on behavior and growth rate.

Master Cattleman Program Offered

By: Brad Bain, McCurtain County Agriculture Educator

The McCurtain County Extension Office is still taking names for individuals interested in participating this winter’s Master Cattleman Program.

To be certified as a “Master Cattleman”, producers must complete a minimum of 28 hours of instruction from the Master Cattleman curriculum plus a final evaluation. The core curriculum consists of 4 hours from each of the following areas:

- Business planning and management
- Marketing and risk management
- Nutrition and management
- Quality assurance and animal health
- Natural resources
- Genetics and reproduction (stocker-only producers may opt out of this section and choose additional hours from other areas)

Additional hours of elective topics are required to meet credit requirements. Electives are additional hours from any chapters for 28 hours total instruction or completion of a project not previously undertaken, such as forage or soil testing, breeding soundness examination, financial plan developed with the assistance of Extension IFMAPS personnel, cow-calf Standardized Performance Analysis (SPA), host a demonstration, etc.

In order for our county to have a Master Cattleman Program, we will need a minimum of 24 individuals to participate. Remember, participants will be committing to complete the entire 28 hours of instruction. Cost of the program will be $100. Fees will pay for the instructional material, a producer certificate, Master Cattleman farm gate sign, a notebook embossed with the Master Cattleman logo, and help defray cost of refreshments for the meetings.

The Extension Office will be taking names of interested individuals now through September and if enough are interested, the program will begin in late October and run through February. Contact the Extension Office at 580-286-7558 to enroll or for any questions.
Weights, Measures, and Doses: What Every Stockman Should Know

By: Dr. Dave Sparks, DVM, Area Food Animal Health Specialist

Grams, kilograms, ml, cc; what does it all mean? What stockman hasn’t stood with medication in hand and wondered if he was helping or making things worse with a wrong dosage. It really isn’t complicated, but it may seem that way to livestock producers who do not use these applications in everyday life. Let’s open the curtains and see if we can let some light in on the subject.

The basic unit of volume in the metric system is the liter. It is slightly larger than a quart, 1.06 times the volume of a quart to be exact. Liters are commonly divided into milliliters, abbreviated ml. Each milliliter is equal in volume to a cube which is one centimeter wide, one centimeter long, and one centimeter high. Thus one milliliter (ml) and one cubic centimeter (cc) express the same unit of volume and can be used interchangeably. There are 30 cc or ml in 1 fluid ounce. As every housewife knows there are 6 teaspoons or 2 tablespoons in a fluid ounce, so there are 5 cc or ml in a teaspoon, or 15 cc or ml in a tablespoon.

<table>
<thead>
<tr>
<th>Volume Conversions</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cup = 8 fl oz</td>
<td>1 ml = 1 cc</td>
</tr>
<tr>
<td>1 pint = 16 fl oz</td>
<td>1000 ml = 1 liter</td>
</tr>
<tr>
<td>1 qt = 32 fl oz</td>
<td>1000 cc = 1 liter</td>
</tr>
<tr>
<td>1 fl oz = 30 cc</td>
<td></td>
</tr>
<tr>
<td>1 qt = .95 liters</td>
<td></td>
</tr>
<tr>
<td>1.06 qt = 1 liter</td>
<td></td>
</tr>
<tr>
<td>1 teaspoon = 5 cc</td>
<td></td>
</tr>
<tr>
<td>1 tablespoon = 15 cc</td>
<td></td>
</tr>
</tbody>
</table>

The basic unit of weight in the metric system is the gram. One gram is defined as the weight of water that occupies one cc at the temperature at which ice starts to melt. There are 454 grams in one pound. 1000 grams equals one kilogram, which is equal to 2.2 pounds. One thousandths of a gram equals one milligram. There are approximately 31 grams or 31,000 milligrams in an ounce.

<table>
<thead>
<tr>
<th>Weight Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 grams = 1 kilogram</td>
</tr>
<tr>
<td>1000 milligrams = 1 gram</td>
</tr>
<tr>
<td>2.2 pounds = 1 kilogram</td>
</tr>
<tr>
<td>1 pound = .45 kilogram</td>
</tr>
<tr>
<td>1 pound = 454 grams</td>
</tr>
<tr>
<td>1 oz = 31.1 grams</td>
</tr>
</tbody>
</table>

Appropriate dosages of pharmaceuticals are often expressed in grams or milligrams per unit of body weight of the animal to be dosed. When medications are given they are commonly measured in units of volume such as cc or fluid ounces. To determine the correct dose for an individual animal you need to know the concentration, which is the amount of the drug expressed in units of weight that will be present in each unit of volume of the product. For example, an antibiotic is packaged and distributed at a concentration of 200 milligrams per milliliter. The recommended dose is 9 milligrams per pound of body weight. How many cc would you give a 120 pound animal? 120 pounds time the 9 milligrams required for each pound of body weight equals 1080 milligrams required. Since we know that the concentration of the product is 200 mg./ml, we can divide 200 into the requirement of 1080 and find that we need 5.4 ml, or since they are the same, 5.4 cc. Dosages for oral medications are often expressed in fluid ounces rather than ml or cc. The same principles apply in that we need to know the amount of the drug required and the concentration of the product as supplied.

Most over-the-counter drugs have dosing guidelines that are very easy to interpret. Prescription drugs, however, may express the dosing guidelines in terms that are not so familiar, and drugs for off label usage will have no guidelines for that application, other than what your veterinarian provides. It may be helpful to know that a dosage level of 1 mg/kg of body weight is equal to 46 mg/100lbs of body weight. If dosage is expressed in units of volume you can remember that 1 milliliter or cc / kg of body weight equals .46 milliliter or cc / pound of body weight.

<table>
<thead>
<tr>
<th>Dosage Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg/kg Body Weight = .46 mg/lb Body Weight</td>
</tr>
<tr>
<td>1 mg/kg Body Weight = 46 mg/100 lb Body Weight</td>
</tr>
<tr>
<td>1 cc/kg Body Weight = .46 cc/lb Body Weight</td>
</tr>
</tbody>
</table>

Although today we are blessed with many effective drugs to safeguard the health of our livestock, minor errors in dosage can result in major problems. Always follow the label directions carefully. If you are not clear on what to use, how much to use, or how best to administer the drug you should always consult your local veterinarian. If the label does not list the species you intend to use it in, or the condition you wish to treat, you must by law, consult a veterinarian for dosage, administration and withdrawal time information. In many countries of the world, producers are not allowed to self administer drugs to their livestock, and health conscious groups within this country are concerned about the practice here. Their concern is that the use of pharmaceuticals in livestock, and especially the improper use, jeopardizes their effectiveness in human medicine. The future of our ability to medicate our livestock depends on how good a job we do of using drugs responsibly today.
Land application of poultry litter, a mixture of bedding material and manure, is known to provide an abundant source of plant macro- and micronutrients. Subsequent applications of litter can even boost soil organic matter and pH. One common misconception is that poultry litter contains viable weed seeds. This idea may have formulated after observing substantial weed growth following land application of litter.

Research evaluating weed seed viability in manure dates back to 1934. Harmon and Keim fed 1000 seeds from each of 7 common weed species to calves, horses, sheep, hogs and chickens (Figure 1). The results indicate that chickens were much more efficient at destroying weed seeds compared to livestock. This is most likely due to a unique anatomical feature possessed by poultry called a gizzard whose chief function is to grind or crush food particles.

Additional hurdles that weed seeds would have to overcome to survive in modern day feed and animal production include improved seed cleaning equipment and regulations aimed at reducing the presence of weed seeds in both livestock and poultry feed. Another hurdle is the feed pelletizing process. Commercial poultry are fed pelletized feed that is exposed to extreme temperatures reaching 200°F, capable of destroying weed seeds.

Further research has been conducted to validate that weed seeds are not present in poultry litter. Auburn University compared broiler litter to equal rates of commercial N and P fertilizer. Each treatment was mixed with a sterile potting medium. The treated soil was then placed into greenhouse trays. Half of the trays were inoculated with common weed seeds while half received no weed seeds. The soil was kept moist for 6 weeks. Results showed that weeds only grew in trays where seeds had been planted, providing evidence that litter did not introduce weed seeds.

North Carolina State University conducted a similar field study comparing 7 different types of poultry litter to equal rates of commercial N fertilizer. Field plots were established and half of the plots per treatment were fumigated with Methyl Bromide while half received no fumigation. Fumigation was used to eliminate and/or reduce existing weed species. Forty-nine days later, fumigated plots showed few or no weeds while non-fumigated plots had numerous weeds. This demonstrates that litter did not introduce weed seeds onto the fumigated plots and weed species were already present prior to treatment applications. Additionally, weed species identified and populations present in the litter plots were similar to the commercial N and control plots.

Both studies provide supporting evidence that weed seeds are not introduced into the soil following application of poultry litter. However, litter, due to its soil amendment properties, can have a dramatic effect on the germination and growth of weed seeds already present in the soil. This may help explain why some producers observe a flurry of weed growth following application of poultry litter.

Useful OCES Websites

beefextension.com Lots of useful links to OSU Beef Cattle Management Information
soiltesting.okstate.edu Link to the OSU Soil, Water and Forage Analytical Lab
osuextra.okstate.edu Link to all of the Oklahoma Cooperative Extension Service Fact Sheets
poultrywaste.okstate.edu Link to poultry waste site and dates of upcoming training sessions state wide
ansi.okstate.edu/software Link to download Animal Science software for calculating rations and other data
Horticulture and Gardening

Garden Tips for September

By: Dr. David Hillock, Extension Horticulture Specialist

Landscape
- Watch for fall specials at garden centers and nurseries since fall is a great time for planting many ornamentals.
- Choose spring flowering bulbs as soon as available.
- Plant cool-season annuals like pansies, ornamental cabbage or kale, snapdragons and dusty miller when temperatures begin to cool.
- Watch for and control any late infestations of tree webworms.
- Twig girdler insects should be controlled if large numbers of small branches of elms, pecans, or persimmons are uniformly girdled from the tree and fall to the ground.
- Begin to reduce the amount of light on outside tropical houseplants by placing them under shade trees before bringing them indoors for the winter.

Vegetables
- You have all of September to plant cool-season vegetables like spinach, leaf lettuce, mustard and radishes.

Lawn
- Last nitrogen fertilizer application of the year on warm-season grasses should be applied no later than September 15th. (HLA-6420)
- Winter broadleaf weeds like dandelion will begin to emerge in late September, which is also the best time to control them with a 2, 4-D type herbicide.
- If pre-emergent control of winter-annual weeds (henbit, chickweed, annual bluegrass, etc.) is desired in lawns, the application should be completed by the second week of September. (HLA-6421) Note: Do not treat areas that will be seeded in the fall.
- Continue bermudagrass spray program with glyphosate products for areas being converted over to tall fescue this fall. (HLA-6421)
- Plan to seed bluegrass, fescue or ryegrass as needed in shady areas in mid- to late-September. Fall is the best time to establish cool-season lawns. (HLA-6419)
- White grub damage can become visible this month. Apply appropriate soil insecticide if white grubs are a problem (EPP-7306). Water product into soil.

Tips for Successful Alfalfa Stand Establishment

By: Dr. Daren Redfearn, Extension Forage Specialist

Good planning, along with acceptable agronomic practices, some art, and a little bit of luck is critical to reliable alfalfa stand establishment in Oklahoma. The exact steps required for success vary from farm to farm and from year to year. However, the 12 steps included in the Alfalfa Establishment Checklist below include most of the critical activities.

Alfalfa Establishment Checklist:
- **Site Selection** - Choose a deep, fertile, well-drained soil.
- **Soil Test** - Fertilize and lime according to a reliable soil analysis.
- **Land Preparation** - Plow, level, and drain low areas well before sowing.
- **Seedbed Preparation** - Develop a level, mellow, firm bed with small clods.
- **Variety Choice** - Select adapted, pest-resistant varieties.
- **Seed Quality** - Use weed-free, clean seed with good germination.
- **Planting Date** - Sow during August 20 to September 15.
- **Seed Placement** - Cover seeds with 1/2" soil and press.
- **Sowing Rate** - Plant 10 to 12 pounds/acre of good seed.
- **Equipment** - Calibrate and adjust planters to place seed correctly.
- **Seed Inoculation** - Use rhizobium bacteria, specific for alfalfa.
- **Pest Control** - Scout fields frequently. Weed, insect, and disease control is especially important in seedling stands.

The objective of alfalfa stand establishment is to obtain about 30 vigorously growing seedlings per square foot before extreme weather conditions prevail. Some producers who want to plant alfalfa in August or September should check off the items listed to determine if they are really ready. The first three should be completed, with many of the other items on the checklist in progress. If you see that you are already far behind, it may be best to start now preparing for next year's planting season. Each of these items is discussed in more detail in OSU Fact Sheet (PSS-2089 Alfalfa Stand Establishment) available at: osuextra.okstate.edu.
The Oklahoma State University Winter Crop School will be held December 15 and 16 on the OSU Campus in Stillwater. A schedule of events is below.

Cost of the school is $125 for a two day registration of $75 for one day only.
Depreciation Update

By: J.C. Hobbs, Assistant Extension Specialist

Additional First Year Depreciation

For the 2009 tax year, an additional first-year depreciation deduction is allowed for qualified property which was placed into service after December 31, 2009. The amount of the depreciation deduction is equal to 50% of the adjusted basis of the qualified property. Producers who do not wish to use this provision can elect out of its use.

For agricultural property to qualify for the additional depreciation deduction, the following five requirements must be met.

1. The property must be purchased in the 2009 calendar year.
2. In general, the property must be placed in service during the 2009 calendar year.
3. Original use of the property must begin with the taxpayer claiming the deduction; therefore, it must be new property.
4. The property must be depreciable using the modified accelerated cost recovery system (MACRS) with a recovery period of 20 years or less.
5. Use of the alternate depreciation system must not be required.

To illustrate how the additional first-year depreciation works, assume a farmer purchases a new tractor in April 2009 for $100,000 and places it in service in May 2009. The depreciable basis is $100,000 for 2009 tax year; therefore, the additional first year depreciation is allowed at $50,000 with the remaining $50,000 to be depreciated using the regular depreciation rules over the recovery period.

IRC Section 179 Expense Depreciation

This provision allows taxpayers to expense the cost of certain depreciable property in the year that it is put into service versus taking a depreciated expense amount over the recovery life of the property. Both new and used property qualifies under this provision.

For tax years beginning with 2009, the maximum amount that will qualify as the Section 179 expensing election per property item is $250,000. The total Section 179 election limit for the given tax year is $800,000 of property placed in service in 2009. In addition, there is a taxable income limitation; therefore, use of this provision cannot create a loss for the taxpayer. Any amount that is not allowed due to the income limitation can be carried forward to future tax years.

For example, a farmer buys a combine for $150,000 during 2009. Using the Section 179 expense deduction, the entire $150,000 can be deducted as an expense on the 2009 tax return. However, if deducting more than $90,000 in 2009 would create a loss for the taxpayer, the remaining $60,000 can be deducted in future years.

To learn more about these tax deductions and other tax benefits that will be applicable for the 2009 tax year, contact your income tax professional or advisor. In addition, the Farmers Tax Guide, IRS Publication 225, contains useful information about these provisions. (www.irs.gov)

Five Year Depreciation Recovery Period for New Farm Machinery

Farm machinery and equipment has a 5-year MACRS recovery period for 2009. To qualify, the original use of the property must begin with the taxpayer during 2009 and the property must be placed in service in 2009. Grain bins, fences or other land improvements, or cotton ginning assets do not qualify.